A factor of a double Mersenne number MMp has form 2*k*Mp+1. We are testing the small k.
All k < 10,000 have been tested up to 20G except for MM34 ad MM35 where k < 500,000.
On this page we insert the K values of factors Q = 2 * k * Mp + 1 proven composite after being tested with pfgw,
and for this reason not suitable of being proper factors of MMp.
100,000,000,000 | 149,966,614,771 | 164,331,338,833 | 276,988,150,163 | 314,740,194,617 | 400,000,000,000 | 411,773,061,611 | 480,498,109,451 | 500,000,000,000 | 800,000,000,000 | 809,802,472,277 | 814,113,011,773 | 815,899,699,093 | 824,891,758,759 | 1,000,000,000,000 | 1,500,000,000,000 | 1,539,930,278,887 | 2,000,000,000,000 | 3,000,000,000,000 | 4,000,000,000,000 | 6,000,000,000,000 | 6,000,000,000,013 | 6,000,001,786,247 | 9,000,000,000,000 | 9,000,000,031,381 | 9,000,001,368,973 | 12,000,000,000,000 | 13,000,000,000,000 | 13,000,001,368,973 | 20,000,000,000,000 | 24,000,000,000,000 | 24,000,000,000,013 | 32,000,000,000,000 | 50,000,000,000,000 | 65,000,000,000,000 | 75,000,000,000,000 | 100,000,000,000,000 | 125,000,000,000,000 | 150,000,000,000,000 | 230,000,000,000,000 | 280,000,000,000,000 | 300,000,000,000,000 | 450,000,000,000,000 | 500,000,000,000,000 | 2,500,000,000,000,000 |
MM( 34 ) | MM( 35 ) | MM( 36 ) | MM( 37 ) | MM( 38 ) | MM( 39 ) | MM( 40 ) | MM( 41 ) | MM( 42 ) | MM( 43 ) | MM( 44 ) | MM( 45 ) | MM( 46 ) | MM( 47 ) | MM( 48 ) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1257787 | 1398269 | 2976221 | 3021377 | 6972593 | 13466917 | 20996011 | 24036583 | 25964951 | 30402457 | 32582657 | 37156667 | 42643801 | 43112609 | 57885161 |
8 | 5 | 84 | 0 | 5 | 89 | 8 | 48 | 1425 | 456 | 324 | 233 | 345 | 185 | 45 |
29 | 44 | 96 | 44 | 24 | 125 | 249 | 65 | 1040 | 608 | 1232 | 624 | 201 | 248 | |
48 | 68 | 144 | 60 | 89 | 168 | 300 | 68 | 1056 | 761 | 1272 | 873 | 233 | 545 | |
53 | 93 | 153 | 104 | 96 | 204 | 333 | 125 | 1373 | 849 | 1368 | 876 | 273 | 593 | |
92 | 140 | 164 | 105 | 153 | 209 | 348 | 152 | 1005 | 684 | 1469 | ||||
93 | 296 | 245 | 245 | 168 | 233 | 477 | 209 | 1388 | 1316 | |||||
113 | 356 | 248 | 249 | 465 | 264 | 485 | 305 | 1493 | 1404 | |||||
212 | 453 | 264 | 264 | 521 | 324 | 564 | 404 | 1424 | ||||||
228 | 521 | 296 | 341 | 593 | 453 | 569 | 473 | 1448 | ||||||
348 | 545 | 381 | 345 | 720 | 473 | 608 | 488 | |||||||
569 | 549 | 465 | 440 | 749 | 524 | 645 | 533 | |||||||
572 | 560 | 501 | 548 | 840 | 540 | 680 | 573 | |||||||
573 | 608 | 509 | 609 | 860 | 629 | 900 | 593 | |||||||
665 | 684 | 536 | 653 | 929 | 644 | 1008 | 617 | |||||||
809 | 713 | 668 | 669 | 948 | 660 | 1365 | 669 | |||||||
812 | 720 | 681 | 888 | 1053 | 728 | 824 | ||||||||
849 | 728 | 756 | 941 | 1124 | 804 | 1409 | ||||||||
888 | 753 | 780 | 1064 | 1125 | 821 | |||||||||
893 | 909 | 956 | 1169 | 1160 | 876 | |||||||||
1005 | 968 | 1064 | 1173 | 1169 | 896 | |||||||||
1008 | 1061 | 1068 | 1185 | 1185 | 944 | |||||||||
1029 | 1089 | 1133 | 1248 | 1208 | 960 | |||||||||
1097 | 1113 | 1173 | 1293 | 1236 | 984 | |||||||||
1100 | 1248 | 1260 | 1349 | 1248 | 1013 | |||||||||
1125 | 1269 | 1265 | 1353 | 1301 | 1029 | |||||||||
1164 | 1293 | 1316 | 1428 | 1376 | 1064 | |||||||||
1293 | 1320 | 1320 | 1445 | 1476 | 1089 | |||||||||
1313 | 1328 | 1341 | 1101 | |||||||||||
1328 | 1388 | 1349 | 1104 | |||||||||||
1388 | 1425 | 1376 | 1188 | |||||||||||
1457 | 1481 | 1433 | 1196 | |||||||||||
1445 | 1224 | |||||||||||||
1493 | 1233 | |||||||||||||
1269 | ||||||||||||||
1349 | ||||||||||||||
1356 | ||||||||||||||
1416 | ||||||||||||||
1481 |